Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.254
Filtrar
Más filtros











Intervalo de año de publicación
1.
Elife ; 132024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747717

RESUMEN

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ARN Bicatenario , Ribonucleasa III , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , ARN Bicatenario/metabolismo , Ribonucleasa III/metabolismo , Ribonucleasa III/química , Ribonucleasa III/genética , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , ARN Helicasas/química , Unión Proteica , Adenosina Trifosfato/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteína 58 DEAD Box/metabolismo , Proteína 58 DEAD Box/genética , Proteína 58 DEAD Box/química
2.
Proc Natl Acad Sci U S A ; 121(21): e2322974121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743621

RESUMEN

SRSF1 is the founding member of the SR protein family. It is required-interchangeably with other SR proteins-for pre-mRNA splicing in vitro, and it regulates various alternative splicing events. Dysregulation of SRSF1 expression contributes to cancer and other pathologies. Here, we characterized SRSF1's interactome using proximity labeling and mass spectrometry. This approach yielded 190 proteins enriched in the SRSF1 samples, independently of the N- or C-terminal location of the biotin-labeling domain. The detected proteins reflect established functions of SRSF1 in pre-mRNA splicing and reveal additional connections to spliceosome proteins, in addition to other recently identified functions. We validated a robust interaction with the spliceosomal RNA helicase DDX23/PRP28 using bimolecular fluorescence complementation and in vitro binding assays. The interaction is mediated by the N-terminal RS-like domain of DDX23 and both RRM1 and the RS domain of SRSF1. During pre-mRNA splicing, DDX23's ATPase activity is essential for the pre-B to B spliceosome complex transition and for release of U1 snRNP from the 5' splice site. We show that the RS-like region of DDX23's N-terminal domain is important for spliceosome incorporation, while larger deletions in this domain alter subnuclear localization. We discuss how the identified interaction of DDX23 with SRSF1 and other SR proteins may be involved in the regulation of these processes.


Asunto(s)
ARN Helicasas DEAD-box , Empalme del ARN , Factores de Empalme Serina-Arginina , Empalmosomas , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Empalmosomas/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Precursores del ARN/metabolismo , Precursores del ARN/genética , Unión Proteica , Células HeLa
3.
Sci Rep ; 14(1): 10963, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745066

RESUMEN

MicroRNAs (miRNAs) are sequence-specific inhibitors of post-transcriptional gene expression. However, the physiological functions of these non-coding RNAs in renal interstitial mesenchymal cells remain unclear. To conclusively evaluate the role of miRNAs, we generated conditional knockout (cKO) mice with platelet-derived growth factor receptor-ß (PDGFR-ß)-specific inactivation of the key miRNA pathway gene Dicer. The cKO mice were subjected to unilateral ureteral ligation, and renal interstitial fibrosis was quantitatively evaluated using real-time polymerase chain reaction and immunofluorescence staining. Compared with control mice, cKO mice had exacerbated interstitial fibrosis exhibited by immunofluorescence staining and mRNA expression of PDGFR-ß. A microarray analysis showed decreased expressions of miR-9-5p, miR-344g-3p, and miR-7074-3p in cKO mice compared with those in control mice, suggesting an association with the increased expression of PDGFR-ß. An analysis of the signaling pathways showed that the major transcriptional changes in cKO mice were related to smooth muscle cell differentiation, regulation of DNA metabolic processes and the actin cytoskeleton, positive regulation of fibroblast proliferation and Ras protein signal transduction, and focal adhesion-PI3K/Akt/mTOR signaling pathways. Depletion of Dicer in mesenchymal cells may downregulate the signaling pathway related to miR-9-5p, miR-344g-3p, and miR-7074-3p, which can lead to the progression of chronic kidney disease. These findings highlight the possibility for future diagnostic or therapeutic developments for renal fibrosis using miR-9-5p, miR-344g-3p, and miR-7074-3p.


Asunto(s)
Fibrosis , Riñón , Células Madre Mesenquimatosas , Ratones Noqueados , MicroARNs , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Ribonucleasa III , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Riñón/patología , Riñón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Transducción de Señal , Enfermedades Renales/genética , Enfermedades Renales/patología , Enfermedades Renales/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Masculino
4.
Mol Cell ; 84(9): 1631-1632, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701738

RESUMEN

In this issue of Molecular Cell, Hao et al.1 demonstrate that the RNA helicase DDX21 recruits the m6A methyltransferase complex to R-loops, ensuring proper transcription termination and genome stability.


Asunto(s)
ARN Helicasas DEAD-box , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Estructuras R-Loop , Metiltransferasas/metabolismo , Metiltransferasas/genética , Inestabilidad Genómica , Adenosina/metabolismo , Adenosina/análogos & derivados , Terminación de la Transcripción Genética
6.
Zhonghua Yi Xue Za Zhi ; 104(18): 1623-1627, 2024 May 14.
Artículo en Chino | MEDLINE | ID: mdl-38742350

RESUMEN

A total of 37 cases of thyroid tumors with pathological features suggestive of DICER1 gene mutation were selected to detect the DICER1 gene and BRAF gene using Sanger sequencing. A total of 10 patients (27.0%) exhibited DICER1 gene mutation all of whom were female with an age of [M(Q1, Q3)] 38.0 (30.5, 47.5) years. All patients had wild-type BRAFV600E gene. The ultrasound examination showed high-low echogenic well-demarcated intra-thyroidal nodules with abundant peripheral and internal blood flow signals in the DICER1 mutated thyroid tumor. The tumor was confined within the thyroid gland, with a diameter of (3.68±1.31) cm. The pathological features are as follows: the majority of tumors are encapsulated, which mainly composed of large follicles rich in colloid and some are small and micro follicles. The nucleus is round and deeply stained or slightly light stained, small to medium-sized, with occasional nuclear grooves and a lack of nuclear pseudoinclusion bodies within the nucleus. Immunohistochemical staining shows that Ki67 proliferation index of approximately 2%-10%. All cases were followed up for 11 to 18 months, and there was no recurrences or distant metastase. This study confirmed that the DICER1 gene mutation is mutually exclusive with the BRAFV600E gene mutation. The thyroid tumor with DICER1 mutation are in big size and are more common in young females with a good prognosis. Cases with the wild-type DICER1 gene may exhibit similar morphological features, and molecular testing is recommended. If somatic DICER1 mutation is confirmed, patients should undergo germline mutation testing to rule out DICER1 syndrome in order to define whether genetic counseling is necessary.


Asunto(s)
ARN Helicasas DEAD-box , Mutación , Ribonucleasa III , Neoplasias de la Tiroides , Humanos , Ribonucleasa III/genética , ARN Helicasas DEAD-box/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Adulto , Persona de Mediana Edad , Femenino , Proteínas Proto-Oncogénicas B-raf/genética , Masculino
7.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732173

RESUMEN

Lung adenocarcinoma (LUAD) is the most prevalent and aggressive subtype of lung cancer, exhibiting a dismal prognosis with a five-year survival rate below 5%. DEAD-box RNA helicase 18 (DDX18, gene symbol DDX18), a crucial regulator of RNA metabolism, has been implicated in various cellular processes, including cell cycle control and tumorigenesis. However, its role in LUAD pathogenesis remains elusive. This study demonstrates the significant upregulation of DDX18 in LUAD tissues and its association with poor patient survival (from public databases). Functional in vivo and in vitro assays revealed that DDX18 knockdown potently suppresses LUAD progression. RNA sequencing and chromatin immunoprecipitation experiments identified cyclin-dependent kinase 4 (CDK4), a cell cycle regulator, as a direct transcriptional target of DDX18. Notably, DDX18 depletion induced G1 cell cycle arrest, while its overexpression promoted cell cycle progression even in normal lung cells. Interestingly, while the oncogenic protein c-Myc bound to the DDX18 promoter, it did not influence its expression. Collectively, these findings establish DDX18 as a potential oncogene in LUAD, functioning through the CDK4-mediated cell cycle pathway. DDX18 may represent a promising therapeutic target for LUAD intervention.


Asunto(s)
Adenocarcinoma del Pulmón , Quinasa 4 Dependiente de la Ciclina , ARN Helicasas DEAD-box , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Animales , Línea Celular Tumoral , Carcinogénesis/genética , Carcinogénesis/metabolismo , Regulación hacia Arriba , Ratones , Ciclo Celular/genética , Proliferación Celular , Ratones Desnudos
8.
FEBS Lett ; 598(9): 1094-1109, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627195

RESUMEN

Allele-specific epigenetic events regulate the expression of specific genes such as tumor suppressor genes. Methods to biochemically identify epigenetic regulators remain limited. Here, we used insertional chromatin immunoprecipitation (iChIP) to address this issue. iChIP combined with quantitative mass spectrometry identified DNA methyltransferase 1 (DNMT1) and epigenetic regulators as proteins that potentially interact with a region of the p16INK4A gene that is CpG-methylated in one allele in HCT116 cells. Some of the identified proteins are involved in the CpG methylation of this region, and of these, DEAD-box helicase 24 (DDX24) contributes to CpG methylation by regulating the protein levels of DNMT1. Thus, iChIP is a useful method to identify proteins which bind to a target locus of interest.


Asunto(s)
Islas de CpG , Inhibidor p16 de la Quinasa Dependiente de Ciclina , ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Epigénesis Genética , Humanos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Células HCT116 , Inmunoprecipitación de Cromatina , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética
9.
AJNR Am J Neuroradiol ; 45(5): 626-631, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38637027

RESUMEN

Primary intracranial sarcoma, DICER1-mutant, is a rare, recently described entity in the fifth edition of the WHO Classification of CNS Tumors. Given the entity's rarity and recent description, imaging data on primary intracranial sarcoma, DICER1-mutant, remains scarce. In this multicenter case series, we present detailed multimodality imaging features of primary intracranial sarcoma, DICER1-mutant, with emphasis on the appearance of the entity on MR imaging. In total, 8 patients were included. In all 8 patients, the lesion demonstrated blood products on T1WI. In 7 patients, susceptibility-weighted imaging was obtained and demonstrated blood products. Primary intracranial sarcoma, DICER1-mutant, is a CNS neoplasm that primarily affects pediatric and young adult patients. In the present case series, we explore potential imaging findings that are helpful in suggesting this diagnosis. In younger patients, the presence of a cortical lesion with intralesional blood products on SWI and T1-weighted MR imaging, with or without extra-axial blood products, should prompt the inclusion of this entity in the differential diagnosis.


Asunto(s)
Neoplasias Encefálicas , ARN Helicasas DEAD-box , Imagen por Resonancia Magnética , Mutación , Ribonucleasa III , Sarcoma , Humanos , Ribonucleasa III/genética , ARN Helicasas DEAD-box/genética , Masculino , Femenino , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Adolescente , Adulto Joven , Adulto , Imagen por Resonancia Magnética/métodos , Sarcoma/genética , Sarcoma/diagnóstico por imagen , Niño , Preescolar
10.
Nat Commun ; 15(1): 3080, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594251

RESUMEN

Epithelial barrier dysfunction and crypt destruction are hallmarks of inflammatory bowel disease (IBD). Intestinal stem cells (ISCs) residing in the crypts play a crucial role in the continuous self-renewal and rapid recovery of intestinal epithelial cells (IECs). However, how ISCs are dysregulated in IBD remains poorly understood. Here, we observe reduced DHX9 protein levels in IBD patients, and mice with conditional DHX9 depletion in the intestinal epithelium (Dhx9ΔIEC) exhibit an increased susceptibility to experimental colitis. Notably, Dhx9ΔIEC mice display a significant reduction in the numbers of ISCs and Paneth cells. Further investigation using ISC-specific or Paneth cell-specific Dhx9-deficient mice demonstrates the involvement of ISC-expressed DHX9 in maintaining epithelial homeostasis. Mechanistically, DHX9 deficiency leads to abnormal R-loop accumulation, resulting in genomic instability and the cGAS-STING-mediated inflammatory response, which together impair ISC function and contribute to the pathogenesis of IBD. Collectively, our findings highlight R-loop-mediated genomic instability in ISCs as a risk factor in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Estructuras R-Loop , Animales , Humanos , Ratones , ARN Helicasas DEAD-box/metabolismo , Células Epiteliales/metabolismo , Homeostasis , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Proteínas de Neoplasias/metabolismo , Células de Paneth/metabolismo , Células Madre/metabolismo
11.
Clin Transl Med ; 14(4): e1628, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572589

RESUMEN

BACKGROUND: Acute myeloid leukaemia (AML) is a haematological malignancy with unfavourable prognosis. Despite the effectiveness of chemotherapy and targeted therapy, relapse or drug resistance remains a major threat to AML patients. N6-methyladenosine (m6A) RNA methylation and super-enhancers (SEs) are extensively involved in the leukaemogenesis of AML. However, the potential relationship between m6A and SEs in AML has not been elaborated. METHODS: Chromatin immunoprecipitation (ChIP) sequencing data from Gene Expression Omnibus (GEO) cohort were analysed to search SE-related genes. The mechanisms of m6 A-binding proteins IGF2BP2 and IGF2BP3 on DDX21 were explored via methylated RNA immunoprecipitation (MeRIP) assays, RNA immunoprecipitation (RIP) assays and luciferase reporter assays. Then we elucidated the roles of DDX21 in AML through functional assays in vitro and in vivo. Finally, co-immunoprecipitation (Co-IP) assays, RNA sequencing and ChIP assays were performed to investigate the downstream mechanisms of DDX21. RESULTS: We identified two SE-associated transcripts IGF2BP2 and IGF2BP3 in AML. High enrichment of H3K27ac, H3K4me1 and BRD4 was observed in IGF2BP2 and IGF2BP3, whose expression were driven by SE machinery. Then IGF2BP2 and IGF2BP3 enhanced the stability of DDX21 mRNA in an m6A-dependent manner. DDX21 was highly expressed in AML patients, which indicated a poor survival. Functionally, knockdown of DDX21 inhibited cell proliferation, promoted cell apoptosis and led to cell cycle arrest. Mechanistically, DDX21 recruited transcription factor YBX1 to cooperatively trigger ULK1 expression. Moreover, silencing of ULK1 could reverse the promoting effects of DDX21 overexpression in AML cells. CONCLUSIONS: Dysregulation of SE-IGF2BP2/IGF2BP3-DDX21 axis facilitated the progression of AML. Our findings provide new insights into the link between SEs and m6A modification, elucidate the regulatory mechanisms of IGF2BP2 and IGF2BP3 on DDX21, and reveal the underlying roles of DDX21 in AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , ARN Helicasas DEAD-box , Leucemia Mieloide Aguda/genética , Recurrencia Local de Neoplasia , ARN , Proteínas de Unión al ARN/genética , Factores de Transcripción , Regulación hacia Arriba/genética
12.
Genes Chromosomes Cancer ; 63(4): e23232, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38607246

RESUMEN

The wide application of RNA sequencing in clinical practice has allowed the discovery of novel fusion genes, which have contributed to a refined molecular classification of rhabdomyosarcoma (RMS). Most fusions in RMS result in aberrant transcription factors, such as PAX3/7::FOXO1 in alveolar RMS (ARMS) and fusions involving VGLL2 or NCOA2 in infantile spindle cell RMS. However, recurrent fusions driving oncogenic kinase activation have not been reported in RMS. Triggered by an index case of an unclassified RMS (overlapping features between ARMS and sclerosing RMS) with a novel FGFR1::ANK1 fusion, we reviewed our molecular files for cases harboring FGFR1-related fusions. One additional case with an FGFR1::TACC1 fusion was identified in a tumor resembling embryonal RMS (ERMS) with anaplasia, but with no pathogenic variants in TP53 or DICER1 on germline testing. Both cases occurred in males, aged 7 and 24, and in the pelvis. The 2nd case also harbored additional alterations, including somatic TP53 and TET2 mutations. Two additional RMS cases (one unclassified, one ERMS) with FGFR1 overexpression but lacking FGFR1 fusions were identified by RNA sequencing. These two cases and the FGFR1::TACC1-positive case clustered together with the ERMS group by RNAseq. This is the first report of RMS harboring recurrent FGFR1 fusions. However, it remains unclear if FGFR1 fusions define a novel subset of RMS or alternatively, whether this alteration can sporadically drive the pathogenesis of known RMS subtypes, such as ERMS. Additional larger series with integrated genomic and epigenetic datasets are needed for better subclassification, as the resulting oncogenic kinase activation underscores the potential for targeted therapy.


Asunto(s)
Rabdomiosarcoma Alveolar , Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Masculino , Humanos , Adulto , Niño , Rabdomiosarcoma/genética , Rabdomiosarcoma Embrionario/genética , Epigenómica , Genómica , Ribonucleasa III , ARN Helicasas DEAD-box , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
13.
Diagn Pathol ; 19(1): 56, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570882

RESUMEN

BACKGROUND: Müllerian adenosarcoma, a rare malignancy, presents diagnostic and therapeutic challenges. In this study, we conducted an analysis of the clinicopathological characteristics of 22 adenosarcomas, with a particular focus on screening for DICER1 hot mutations. METHODS: The cohort consisted of patients with adenosarcoma who were registered at the West China Second Hospital between the years 2020 and June 2022. Sanger sequencing was employed to screen for somatic Hotspot mutations in the RNase IIIb domain of DICER1 in the 22 adenosarcomas. RESULTS: Only one patient exhibited a DICER1 mutation that was not a DICER1 Hotspot mutation. Among the 22 patients, all underwent total hysterectomy with bilateral salpingo-oophorectomy, and 14 out of these 22 patients received adjuvant treatment. CONCLUSION: In summary, our study of 22 Müllerian adenosarcomas focused on the clinicopathological features and the presence of DICER1 Hotspot mutations. Although our findings did not reveal any DICER1 mutations in the studied samples, this negative result provides valuable information for the field by narrowing down the genetic landscape of adenosarcomas and highlighting the need for further research into alternative molecular pathways driving this malignancy.


Asunto(s)
Adenosarcoma , Femenino , Humanos , Adenosarcoma/genética , Adenosarcoma/patología , Mutación , China , Ribonucleasa III/genética , ARN Helicasas DEAD-box/genética
14.
Radiologia (Engl Ed) ; 66(2): 132-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38614530

RESUMEN

80% of renal carcinomas (RC) are diagnosed incidentally by imaging. 2-4% of "sporadic" multifocality and 5-8% of hereditary syndromes are accepted, probably with underestimation. Multifocality, young age, familiar history, syndromic data, and certain histologies lead to suspicion of hereditary syndrome. Each tumor must be studied individually, with a multidisciplinary evaluation of the patient. Nephron-sparing therapeutic strategies and a radioprotective diagnostic approach are recommended. Relevant data for the radiologist in major RC hereditary syndromes are presented: von-Hippel-Lindau, Chromosome-3 translocation, BRCA-associated protein-1 mutation, RC associated with succinate dehydrogenase deficiency, PTEN, hereditary papillary RC, Papillary thyroid cancer- Papillary RC, Hereditary leiomyomatosis and RC, Birt-Hogg-Dubé, Tuberous sclerosis complex, Lynch, Xp11.2 translocation/TFE3 fusion, Sickle cell trait, DICER1 mutation, Hereditary hyperparathyroidism and jaw tumor, as well as the main syndromes of Wilms tumor predisposition. The concept of "non-hereditary" familial RC and other malignant and benign entities that can present as multiple renal lesions are discussed.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/genética , Radiólogos , Ribonucleasa III , ARN Helicasas DEAD-box
15.
Hematology ; 29(1): 2338509, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38597818

RESUMEN

Myelodysplastic syndromes (MDS) patients with DEAD-box helicase 41 (DDX41) mutations have been reported to be treated effectively with lenalidomide; however, there are no randomized studies to prove it. Venetoclax and azacitidine are safe and effective in high-risk MDS/AML. In this study, we evaluated the efficacy of venetoclax and azacitidine combination therapy in eight consecutive MDS patients with DDX41 mutations at our centre from March 2021 to November 2023. We retrospectively analyzed the genetic features and clinical characteristics of these patients. Our findings suggest that MDS patients with DDX41 mutation may benefit from the therapy, for six subjects received this regimen as initial therapy and five of the six subjects achieved complete remission.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Síndromes Mielodisplásicos , Sulfonamidas , Humanos , Estudios Retrospectivos , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Mutación , Azacitidina/uso terapéutico , ARN Helicasas DEAD-box
16.
Immunity ; 57(4): 731-751, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599168

RESUMEN

RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.


Asunto(s)
ARN Helicasas DEAD-box , Transducción de Señal , ARN Helicasas DEAD-box/genética , Helicasa Inducida por Interferón IFIH1/metabolismo , Proteína 58 DEAD Box , Inmunidad Innata , Receptores Inmunológicos , ARN
17.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 40-44, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678629

RESUMEN

This study aimed to investigate the expression of long non-coding ribonucleic acid (lncRNA) DDX11 antisense RNA 1 (DDX11-AS1) in breast cancer (BC) tissues and cells and investigate its biological function and potential molecular mechanism through in vitro experiments. Tissue specimens were obtained from 44 BC patients. TRIzol method was used to extract RNAs from the tissues. The relative expression of DDX11-AS1 in BC tissues and the expression of DDX11-AS1 in BC cells were detected via quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The effect of DDX11-AS1 on the proliferation ability of BC cells was detected via cell counting kit-8 (CCK-8) assay. Flow cytometry was adopted to study the effect of DDX11-AS1 on the distribution of BC cell cycle. Transwell assays were performed to analyze the effects of DDX11-AS1 on the migration and invasion abilities of BC cells. Finally, after interfering with the expression of DDX11-AS1 in BC cells, changes in the expressions of molecular markers for epithelial-mesenchymal transition (EMT) were detected via Western blotting. According to the results of qRT-PCR, the expression of DDX11-AS1 was up-regulated in 38 out of 44 cases of BC tissues compared with that in the para-carcinoma tissues, and the expression of DDX11-AS1 in BC cells was up-regulated as well. After interference with the expression of DDX11-AS1 in BC cells, it was found via CCK-8 assay that the proliferation ability of BC cells was restrained, flow cytometry results showed that the BC cell cycle was arrested at G1/G0 phase, and the results of transwell assays revealed that the cell invasion and migration abilities were suppressed in experimental group compared with those in control group. According to the results of Western blotting, after interfering with the expression of DDX11-AS1 in BC cells, there were changes in the expressions of molecular markers for EMT. In BC, the expression of lncRNA DDX11-AS1 is up-regulated, which promotes the proliferation, migration and invasion of BC cells by regulating EMT.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , ADN Helicasas , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , ARN Largo no Codificante , Humanos , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Femenino , Movimiento Celular/genética , Proliferación Celular/genética , Invasividad Neoplásica/genética , Línea Celular Tumoral , Persona de Mediana Edad , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Ciclo Celular/genética
18.
Biochem Biophys Res Commun ; 714: 149964, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38669753

RESUMEN

Human DDX3X, an important member of the DEAD-box family RNA helicases, plays a crucial role in RNA metabolism and is involved in cancer development, viral infection, and neurodegenerative disease. Although there have been many studies on the physiological functions of human DDX3X, issues regarding its exact targets and mechanisms of action remain unclear. In this study, we systematically characterized the biochemical activities and substrate specificity of DDX3X. The results demonstrate that DDX3X is a bidirectional RNA helicase to unwind RNA duplex and RNA-DNA hybrid driven by ATP. DDX3X also has nucleic acid annealing activity, especially for DNA. More importantly, it can function as a typical nucleic acid chaperone which destabilizes highly structured DNA and RNA in an ATP-independent manner and promotes their annealing to form a more stable structure. Further truncation mutations confirmed that the highly disordered N-tail and C-tail are critical for the biochemical activities of DDX3X. They are functionally complementary, with the N-tail being crucial. These results will shed new light on our understanding of the molecular mechanism of DDX3X in RNA metabolism and DNA repair, and have potential significance for the development of antiviral/anticancer drugs targeting DDX3X.


Asunto(s)
Adenosina Trifosfato , ARN Helicasas DEAD-box , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Adenosina Trifosfato/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Especificidad por Sustrato , ARN/metabolismo , ARN/química , ARN/genética , ADN/metabolismo , ADN/química
19.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569554

RESUMEN

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , ARN Helicasas DEAD-box , Exorribonucleasas , Inestabilidad Genómica , Metiltransferasas , Estructuras R-Loop , ARN Polimerasa II , Terminación de la Transcripción Genética , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Adenosina/metabolismo , Adenosina/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Células HEK293 , Cromatina/metabolismo , Cromatina/genética , Daño del ADN , Células HeLa , ARN/metabolismo , ARN/genética , Transcripción Genética , Metilación de ARN
20.
Am J Surg Pathol ; 48(6): 733-741, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38539053

RESUMEN

DICER1 tumor predisposition syndrome results from pathogenic variants in DICER1 and is associated with a variety of benign and malignant lesions, typically involving kidney, lung, and female reproductive system. Over 70% of sarcomas in DICER1 tumor predisposition syndrome occur in females. Notably, pediatric cystic nephroma (pCN), a classic DICER1 tumor predisposition syndrome lesion, shows estrogen receptor (ER) expression in stromal cells. There are also renal, hepatic, and pancreatic lesions unassociated with DICER1 tumor predisposition syndrome that have an adult female predominance and are characterized/defined by ER-positive stromal cells. Except for pCN, the expression of ER in DICER1-associated lesions remains uninvestigated. In the present study, ER expression was assessed by immunohistochemistry in 89 cases of DICER1-related lesions and 44 lesions lacking DICER1 pathogenic variants. Expression was seen in stromal cells in pCN and pleuropulmonary blastoma (PPB) types I and Ir, whereas anaplastic sarcoma of kidney and PPB types II and III were typically negative, as were other solid tumors of non-Müllerian origin. ER expression was unrelated to the sex or age of the patient. Expression of ER showed an inverse relationship to preferentially expressed antigen in melanoma (PRAME) expression; as lesions progressed from cystic to solid (pCN/anaplastic sarcoma of kidney, and PPB types I to III), ER expression was lost and (PRAME) expression increased. Thus, in DICER1 tumor predisposition syndrome, there is no evidence that non-Müllerian tumors are hormonally driven and antiestrogen therapy is not predicted to be beneficial. Lesions not associated with DICER1 pathogenic variants also showed ER-positive stromal cells, including cystic pulmonary airway malformations, cystic renal dysplasia, and simple renal cysts in adult kidneys. ER expression in stromal cells is not a feature of DICER1 perturbation but rather is related to the presence of cystic components.


Asunto(s)
Biomarcadores de Tumor , ARN Helicasas DEAD-box , Inmunohistoquímica , Receptores de Estrógenos , Ribonucleasa III , Humanos , Ribonucleasa III/genética , ARN Helicasas DEAD-box/genética , Femenino , Masculino , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/análisis , Niño , Adulto , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Adolescente , Persona de Mediana Edad , Preescolar , Adulto Joven , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/enzimología , Blastoma Pulmonar/patología , Blastoma Pulmonar/genética , Blastoma Pulmonar/enzimología , Predisposición Genética a la Enfermedad , Lactante , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA